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Abstract

PV power systems are electrical power systems 
energized by PV modules or cells. This thesis starts 
with the introduction of PV modeling methods, on 
which our re- search is based. Parameter estimation is 
used to extract the parameters of the PV models 
characterizing the utilized PV devices. To improve 
efficiency and accuracy, we proposed sequential 
Cuckoo Search (CS) and Parallel Particle Swarm 
Optimization (PPSO) methods to extract the 
parameters for different PV electrical models. Simu- 
lation results show the CS has a faster convergence 
rate than the traditional Genetic Algorithm (GA), 
Pattern Search (PS) and Particle Swarm Optimization 
(PSO) in se- quential processing. The PPSO, with an 
accurate estimation capability, can reduce at least 50% 
of the elapsed time for an Intel i7 quad-core processor.

Keywords: - Artificial intelligence (AI), Bio-
inspired (BI), Classical techniques MPPT techniques, 
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Introduction

This chapter first presents the background and 
motivation of the thesis work, which is followed by 
this project’s aims and objectives. We highlight the 
main contributions on the topic of the application of 
artificial intelligence algorithms to parameter 
estimation and maximum power point tracking 
methods. A conclusion and future work of the thesis 
are provided at the end of the chapter.

Literature Review

The primary purpose of this chapter is to review the 
studies on PV parameter esti- mation and Maximum 
Power Point Tracking (MPPT) methods with respect 
to their motivation and strategies. To this end, this 
chapter first introduces the most widely used electrical 
models for Photovoltaic (PV) devices which our 
research is based on. It then proceeds to present the 
state and progress of the current literature on the 

related work documented in this thesis.
Part of the content of this chapter has been published 
in the following review paper:

Jieming Ma, Ka Lok Man, Tiew On Ting, Hyunshin 
Lee, Taikyeong Jeong, Jong- Kug Sean, Sheng-Uei 
Guan, and Prudence W. H. Wong, Insight of Direct 
Search Methods and Module-Integrated Algorithms 
for MPPT of Stand-Alone Photo- voltaic Systems, 
Lecture Notes in Computer Science (LNCS2012), vol. 
7513, pp. 468-476, 2012.

A Review of Modeling Methods for Photovoltaic (PV) 
Cells

Although PV module prices fell by 74% from 1995 to 
2011 [20], the initial cost of a PV system is still 
relatively high. An accurate assessment of the 
electrical character- istics is therefore indispensable in 
the system design [21]. PV manufacturers usually 
provide typical electrical characteristics of their PV 
modules, such as the current at Maximum Power Point 
(MPP) Imp, the voltage at the MPP Vmp, the power at 
MPP Pmax, the open-circuit voltage Voc and short-
circuit current Isc. These values are generally 
measured at the Standard Test Conditions (STCs) 
which correspond to a module temperature of 25 and 
an irradiance of 1000 W/m2 at 1.5 air mass spectral 
distribu- tions. The current and voltage (I-V ) 
characteristic curves under several different test 
conditions may also be presented by manufactures. 
Despite this, the data available in manufactures’ data 
sheet are still limited and usually cannot fulfill the 
engineering requirements because PV modules always 
operate under environments far from these test 
conditions.
Any PV device can be modeled using the equivalent 
circuit models [22]. These electrical models, with the 
ability to predict I-V characteristics of a PV cell or 
module under the working environment other than 
STCs, are predictive performance tools that allow PV 
system designers to understand, optimize, and develop 
PV power generation systems.   They are broadly 
applied to estimate whether a PV power generation 
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sys- tem is economically feasible.  Recently, many 
MPPT techniques have been proposed to overcome the 
problems caused by partial shading conditions and 
rapidly changing environmental conditions [7, 10, 11, 
23, 24]. For instance, Chen et al. [10] utilized model- 
based Particle Swam Optimization (PSO) to search the 
Global Maximum Power Point (GMPP). In [25, 26], 
the PV array was adaptively reconfigured by a control 
algorithm integrated with emulated PV module 
models. These methods have high-lighted the need for 
a reliable PV electrical model with high accuracy but 
very complex.
Significant research efforts have been made to develop 
electrical models of PV systems [27]. These models 
include analytical models based on PV cell physics, 
empirical models, and a combination of these two 
approaches [22]. Their mathematical expres- sions 
formulate the terminal current I with the most crucial 
technical characteristics and environment variables, 

such as terminal voltage V , the ambient temperature 
T , and the irradiance G. Even though the other 
environment factors (e.g. dust and wind velocity) may 
change the electrical characteristics of PV modules, it 
is quite impossible to obtain a model that accounts for 
every single effect on the performance of a PV model 
[28]. Among numerous modeling approaches, the 
Ideal Single-Diode (ISD) model achieves the lowest 
computational complexity. The Single-Diode (SD) 
model is usually considered to offer a good 
compromise between simplicity and accuracy [29]. In 
con- sideration of the recombination loss in the 
depletion region, Sah [30] introduced a more accurate 
model known as Double-Diode (DD) model. The 
Three-Diode (TD) model can be found in [31]. 
Although it takes into account the influence of grain 
boundaries and leakage current through the 
peripheries, the extra diode increases the number of

Figure 2.1: Electrical diagram of the ideal single-diode model.

parameters. Accordingly, more computational effort is 

needed to predict the electrical characteristics via a TD 

model. In the next three subsections we will present 

through a variety of PV electrical models, including 

the ISD model, SD model and DD model. Since the 

TD model has complex non-linear analytical 

expressions and not suitable for fast computation, it is 

not studied in this thesis.

Research on Parameter Estimation for PV Electrical 
Models

As discussed in the previews section, PV electrical 
models involve a series of parameters. These models 
cannot be directly used because of lack of proper 
model parameters characterizing the PV cells. 
Parameter estimation is a discipline that provides tools 
for estimating constants appearing in the model [53]. 
With the parameters obtained in such a way, the 
difference between the simulated and experimental 
data can be minimized.
In the literature [54, 55], conventional parameter 
estimation methods are classified into two categories:

Analytical techniques [56–60];

Numerical extraction techniques [16, 61–65].

Analytical Techniques

An analytical technique utilizes mathematical 
equations to describe the parameters of PV electrical 
models. There is much research on addressing the 
parameter estimation problem by analytical 
expressions in terms of the physical parameters, such 

as the coefficient of diffusion of electrons in the 
semiconductor, lifetime of minority carriers, the 
intrinsic carrier density, etc. [31]. However, the 
values of these physical parameters are normally not 
provided by manufacturers, which impels researchers 
to explore an alternative way of formulating the 
parameters by using the information available in 
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datasheet (e.g.  short circuit current coefficient Ki, 
open circuit voltage coefficient Kv, Isc, Voc, Vmp, 

Imp, etc.). In [21], the Iph is stated in relations of a 
linear meaning as:

G
Iph = (Iphn + Ki∆T ) , (2.12)

where Iphn, Gn, and Tn are used to denote the 
photocurrent, solar irradiance, and cell temperature 
measured at the STCs, respectively. ∆T  is the 
difference between T  and Tn.

Based on the diode theory, Messenger and Ventre [2] 

presented an approximate linear expression for the 
diode saturation current Io1 , which can be expressed 
as Based on the diode theory, Messenger and Ventre 
[2] presented an approximate linear expression for 
the diode saturation current Io1 , which can be 
expressed as

Io1 = 
Ion1

T
e[(qEg/A1k)(1/Tn−1/T )], (2.13)

Tn

where Eg is the material band gap. Usually, Eg is set 
at a reasonable level depending on the semiconductor 
materials (Eg = 1.12 eV for the polycrystalline Si at 

25 ) in simulation and design tools [66].  De Soto et 
al. [58] accessible an guesstimate method for Eg in a 
varied temperature range:

Eg = Egn(1 − 0.0002677∆T ), (2.14)
where Egn is a normal value at the STCs (Egn = 1.12 
eV for silicon cells and Egn =
1.6 eV for the triple intersection nebulous cells).

The value of ideality factor is empirical.   Numerous 

authors discussed the means of estimating the correct 
value of this constant [29, 67]. For simplicity, the A1 
can be assumed to be independent of temperature and 
set the value in the range 1 

≤ A1 ≤ 2 [21].

A large number of analytical methods have been 
applied to determine the values of Rs and Rp over the  
years. In [28], mathematical formulas are derived  to  
predict Rs and Rp. However, the slopes at the open-
circuit and short-circuit points are not usually given 
in I-V  datasheets. Iterative process was proposed in 
[21] and [50] based on several analytical conditions. 

This approach may obtain lower absolute error, not 
at the expense of increased computation complexity. 
Considering the fact that Rs and Rp vary in almost 
inverse linear mode with the solar irradiance, Brano 
[50] demonstrated an improved expression for the 
series and shunt resistances:

R =
Gn R

s G
sn

R =
Gn R

p G
pn

,

, (2.15)

where the values of the resistances Rsn and Rpn are 
evaluated under the STCs. By using the 
aforementioned relations, the model is able to 
analytically describe the I-V characteristics of a PV 
generator for each generic condition of operative 
temperature and solar irradiance [58].

The analytical techniques conclude approximate 
relations with the experimental data. Though modest, 
they are mostly reliant on on the key points on the I-
V curve.
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Figure 2.4: Block diagram of the restriction evaluation method for PV electrical models.

The blunders can be momentous & cannot be extra amended if these key points are mistakenly specified.

Numerical Techniques

Assisted by a statistical method, 
numerical extraction techniques fit a 

great many operating points on the I-V 
curves to obtain a more accurate 
solution [61–63, 65]. These curve 
fitting methods minimize the Root 
Mean Square (RMS) error ε given in 
[28] as:

                                                        ε = 

‚
., 1

Σ

d=
1

(Id − Îd) (2.16)

where d (d = 1, 2, ..., N ) is the number of measured 
I-V data. The simulated and measured data are 
denoted by Id and Id, respectively.
The numerical abstraction practices are normally 
measured as accurate tactics in parameter assessment 
since all the unrushed data can be used in calculation. 
How- ever, it is axiomatic that their performance is 
also related to the type of fitting al- gorithm, the cost 
function as well as the initial values of the parameters 
to be ex- tracted [61]. The non-linear curve-fitting 
procedures are quite complicated both math- 
ematically and in terms of computer code [68]. 
Additionally, the systems can be com- putationally 
exclusive as the size of essential data is greatly large.

Evolutionary Algorithm Techniques

Evolutionary Algorithm (EA) techniques are very 
efficient in optimizing real-valued multi-modal 
objective functions [12, 13, 69, 70]. To date, Genetic 
Algorithm (GA) [18], Particle Swarm Optimization 

(PSO) [17, 71, 72], Bacterial Foraging Algorithm 
(BFA) [73], Simulated Annealing (SA) [74] , Pattern 
Search [19], Differential Evolution [75,76] have been 
hired for assessing parameters of several PV 
electrical models due to their capacity to handle non-
linear roles without needing derivatives information.
PV parameter estimation is basically a process that 
minimizes the difference be- tween the calculated 
and measured data by adjusting the normal PV 
parameters [77]. Figure 2.4 shows the flow diagram 
of a typical parameter estimation process for PV 
devices. After importing several constants or 
parameters, the parameter estimation algorithm starts 
evaluating possible solutions by using the objective 
function with the measured I-V data. In general, the 
objective function is formulated by the RMS er- ror 
which serves to aggregate absolute differences into a 
single measure of predictive power. If the number of 
experimental data is denoted by N , the RMS error 
can be mathematically formulated as the following
equation:

2
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ε = 

‚
., 1 Σ

d=
1

(fd(V̂ , Î, X))2, (2.17)

where V^ and I^ denote the measured voltage and current, respectively.   fd(x) is the
objective function for the dth data. X is a path representing the classical parameters. Take the 
SDC model for example. fd(V , I, X) is a homogeneous form of Equation (2.5), namely:

V̂  +ÎRs V̂ + ÎRs
f (V, I, X) = I − I   (e − 1) − − I. (2.18)

In the above equation, X is a vector involving the 
model parameters Iph, Io1 , A1, Rs, and Rp.
The EA techniques may obtain the most accurate 
solution compared with the other methods if their 
initial points and algorithm parameters are set 
properly. On the other hand, most of these methods 
apply multiple agents or particles in random search 
and do not provide a significant improvement in 
computational efficiency. Taking into account the 
fact that extraction is the main component of a PV 

system simulator, the overall simulation speed would 
be greatly compromised [75].
Research on Maximum Power Point Tracking 
(MPPT) Methods
In a P -V characteristic curve of PV cells or modules, 
there exists only operating point where the power is 
maximum. This point is known as the MPP. As 
shown in Figure 2.5, the MPP locus, denoted by 
circles, varies with different atmospheric conditions.

Figure 2.5: Electrical characteristic curves of a 
MSX60 PV module under different atmospheric 
conditions: (a) I-V curves under various irradiance 
levels; (b) P -V curves under various irradiance 
levels; (c) I-V curves under various temperatures; (d) 
P -V curves under various temperatures.

PV modules are usually connected in series to scale 
up the voltage because their open 

circuit voltage is independent of the module area and 
is limited by the semicon- ductor properties [33]. In 
an outdoor environment, the whole or some parts of 
the PV array may be under a non-uniform irradiance 
condition caused by passing clouds, high buildings, 
trees, etc. In this case, the series connected PV array 
is in open circuit, which is known as “hot spot” [33]. 
To dodge this problem, sidestep diodes are 
customarily sited

Conclusions

The Cuckoo Search (CS) algorithm has been 
applied to estimate the parameters for PV 
electrical models. The CS algorithm is based 
on the cuckoo breeding behavior.  Instead of 
conventional isotropic random walks, the 
algorithm uses Lévy flights. The simulation 
results showed that CS algorithm outperforms 
Genetic Algorithm (GA) [18], Chaos Particle 
Swarm Algorithm (CPSO) [17], and Pattern 
Search (PS) [74] methods. At a certain 

irradiance level, the CS obtained slightly 

lower RMSE for model parameters, recording 
0.0010 in numerical value, and its 
convergence speed was slightly faster than the 
CPSO. Moreover, the validity of the CS 
algorithm was evaluated using KC200GT PV 
module operating under different 
environmental conditions. In statistical 
analysis, the CS algorithm recorded the lowest 
RMSE value compared with other 
algorithms such as the GA, CPSO and PS.
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