LOW NOISE AMPLIFIER ANALYSIS IN 3.1 TO 10 GHZ FREQUENCY RANGE

ANKITA SAHU, SHIV PRAKASH PALHEWAR

Abstract


A 3 to 10 GHz Low Noise Amplifier (LNA) with good gain and  band pass  property for Ultra Wide Band (UWB) applications using 0.18 µm CMOS technology is designed. Therefore, we proposed a wideband input network with band pass capability UWB LNA using LC network. It uses a CMOS amplifier with 0.18 µm technology. We have achieved A power gain of 49mW and minimum noise figure of 0.9 dB for the core LNA.


Keywords


COMPLEMENTARY METAL–OXIDE SEMICONDUCTOR (CMOS), LOW-NOISE AMPLIFIER (LNA), BAND PASS, ULTRA WIDEBAND (UWB).

Full Text:

PDF

References


REFERENCES

S. Lo, I. Sever, S.-P. Ma, P. Jang, A. Zou, C. Arnott, K. Ghatak, A. Schwartz, L. Huynh, V. T. Phan, and T. Nguyen, “A dual-antenna phased-array UWB transceiver in 0.18-µm CMOS,” IEEE J. Solid- State Circuits, vol. 41, no. 12, pp. 2776–2786, Dec. 2006.

T. W. Fischer, B. Kelleci, K. Shi, A. I. Karsilayan, and Serpedin “An analog approach to suppressing in-band narrow-band interference in UWB receivers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 5, pp. 941–950, May 2007.

K. Rambabu, M. Y.-W. Chia, K. M. Chan, and J. Bornemann, “Design of multiple-stopband filters for interference suppression in UWB applications,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 8, pp 3333– 3338, Aug. 2006.

Sever, S. Lo, S.-P. Ma, P. Jang, A. Zou, C. Arnott, K. Ghatak, A. Schwartz, L. Huynh, and T. Nguyen, “A dual-antenna phase-array ultra-wideband CMOS transceiver,” IEEE Commun. Mag., vol. 44, no. 8, pp. 102–110, Aug. 2006.

A. Valdes-Garcia, C. Mishra, F. Bahmani, J. Silva-Martinez, and E. Sánchez-Sinencio, “An 11-band 3– 10 GHz receiver in SiGe BiCMOS for multiband OFDM UWB communication,” IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 935–948, Apr. 2007.

A. Bevilacqua, A. Maniero, A. Gerosa, and A. Neviani, “An integrated solution for suppressing WLAN signals in UWB receivers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 8, pp. 1617– 1625,Aug. 2007.

A. Vallese, A. Bevilacqua, C. Sandner, M. Tiebout, A. Gerosa, and A. Neviani, “Analysis and design of an integrated notch filter for the rejection of interference in UWB systems,” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 331–343, Feb. 2009.

X. Guan and C. Nguyen, “Low-power-consumption and high-gain CMOS distributed amplifiers using cascade of inductively coupled common-source gain cells for UWB systems,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 8, pp. 3278–3283, Aug. 2006.

P. Heydari, “Design and analysis of a performance-optimized CMOS UWB distributed LNA,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1892–1905, Sep. 2007.

Y. Park, C.-H. Lee, J. D. Cressler, and J. Laskar, “The analysis ofUWB SiGe HBT LNA for its noise, linearity, and minimum group delay variation,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1687– 1697, Apr. 2006.

P. Z. Rao, Y. C. Cheng, C. P. Liang, and S. J. Chung, “Cascode feedback amplifier combined with resonant matching for UWB system,” in Proc. Progr. Electromagn. Res. Symp., Mar. 2007, pp. 1040–1043.

J. Lee and J. D. Cressler, “Analysis and design of an ultra-wideband low-noise amplifier using resistive feedback in SiGe HBT technology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 3, pp. 1262–1268, Mar. 2006.

G. Cusmai, M. Brandolini, P. Rossi, and F. Svelto, “A 0.18-µm CMOS selective receiver front-end for UWB applications,” IEEE J. Solid-State Circuits, vol. 41, no. 8, pp. 1764–1771, Aug. 2006.

Y. Lu, K. S. Yeo, A. Cabuk, J. Ma, M. A. Do, and Z. Lu, “A novel CMOS low-noise amplifier design for 3.1- to 10.6-GHz ultra-wideband wireless receivers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 8, pp. 1683–1692, Aug. 2006.

X. Li, S. Shekhar, and D. J. Allstot, “Gm-boosted common-gate LNA and differential Colpitts VCO/QVCO in 0.18- m CMOS,” IEEE J.Solid-State Circuits, vol. 40, no. 12, pp. 2609–2619, Dec. 2005.

A. Bevilacqua and A. M. Niknejad, “An ultrawideband CMOS lownoise amplifier for 3.1– 10.6-GHz wireless receivers,” IEEE J. Solid- State Circuits, vol. 39, no. 12, pp. 2259–2268, Dec. 2004.


Refbacks

  • There are currently no refbacks.